ABSTRACT

In recent years, the demand for compact handheld communication devices has grown significantly. Devices having internal antennas have appeared to fill this need. Antenna size is a major factor that limits device miniaturization. In the past few years, new designs based on the Microstrip patch antennas (MSPA) are being used for handheld wireless devices because these antennas have low-profile geometry and can be embedded into the devices. New wireless applications requiring operation in more than one frequency band are emerging. Dual-band and tri-band phones have gained popularity because of the multiple frequency bands used for wireless applications. Reducing antenna size generally degrades antenna performance. It is therefore important to also examine the fundamental limits and parameter tradeoffs involved in size reduction. In the handheld environment, antennas are mounted on a small ground plane. This paper presents the performance analysis of Different shapes Microstrip Patch antenna i.e. Z shape, H shape , E shape by using different dielectric substrate materials, to operate in the frequency range of 0.6 GHz to 2 GHz. The aim of this paper is to broaden the impedance bandwidth and to maximize the gain, thereby improving the performance of antenna. By comparing different substrates of dielectric material, an appropriate substrate was chosen to design Microstrip antenna. After simulation the antenna performance characteristics such as antenna input impedance, VSWR, Return loss and current density are obtained.

Key Words: - E –Shaped patch, H-Shaped patch, Z-patched patch, Microstrip antennas, Ansoft HFSS 13, wideband.

1. INTRODUCTION

Microstrip antennas are being frequently used in Wireless application due to its light weight, low profile, low cost and ease of integration with microwave circuit. However standard rectangular Microstrip antenna has the drawback of narrow bandwidth and low gain. The bandwidth of Microstrip antenna may be increased using several techniques such as use of a thick or foam substrate, cutting slots or notches like E shaped[1][5] , Z shaped, H shaped[6] [8]patch antenna, introducing the parasitic elements either in coplanar or stack configuration, and modifying the shape of the radiator patch by introducing the slots. In modern communication system the Microstrip patch antennas are widely used due to low profile, low weight, low cost. However, the antennas suffered from narrow bandwidth and low gain. Therefore, different techniques have been proposed in the literature to increase the bandwidth. These techniques include cutting slots in the radiating patch, stacking geometry, shorting pins and introducing slots in ground plane. In recent times, many novel planar antennas have been designed to satisfy the requirements of mobile cellular communication systems. Some Microstrip antennas are also very good choice for applications in communication devices for global positioning system. In this paper, we present three shapes of antennas like Z shape, H shape, E shape patch antennas which are operated in the range of 0.6GHz to 2GHz which are mainly design to operate in wireless communications.

1.1 Physical parameters

\[
\text{width of metallicpatch(w)} = \frac{1}{2f_1 \sqrt{\mu_0 \varepsilon_0}}
\]
length of metallicpatch(L)

\[L = L_{\text{eff}} - 2\Delta l \]

where

\[L_{\text{eff}} = \frac{c}{2h\sqrt{\varepsilon_{\text{eff}}}} \]

Calculation of length extension

\[\frac{\Delta l}{h} = 0.412 \frac{(\varepsilon_{\text{eff}} + 0.3)(\frac{w}{h} + 0.264)}{(\varepsilon_{\text{eff}} - 0.258)(\frac{w}{h} + 0.8)} \]

1.2 Flow chart

Fig. 1. Flow chart of microstrip patch Antenna.

Description

Step1: Choose the microstrip antenna with required parametars i.e width, length.

Step2: Now observe the performance of antenna using different substrates.

Step3: If goal reached i.e. satisfied with bandwidth, vswr and other parametars goto end.

Step4: Otherwise goto start and change the shape of antenna and observe performance .

This process is continued until the desired characteristics are obtained. The above flowchart and algorithm is used to all the three shapes of antennas.

2. ANTENNA DESIGN

In this paper we design three different shapes of antennas such as Z shape , H shape and E shape antennas were designed by using HFSS13.

2.1 Z Shape Antenna Design

Fig. 2. Z Shape Antenna Design
The antenna is designed using Z-paper substrate having dielectric constant of 3.4.
Length of ground plane \(L_g = 100\) mm,
Width of ground plane \(W_g = 75\) mm,
Length of Antenna \(L = 56\) mm,
Width of Antenna \(W = 50\) mm,
\(W_f = 3.8\) mm,
\(L_f = 41\) mm.
The ground plane size is selected as \(40\) mm x \(60\) mm, and the relative dielectric constant and the thickness of the substrate are=3.4 and 2.6,respectively.

2.2 H Shape Antenna Design [6][8]

![H Shape Antenna](image)

The physical parameters and flow chart of E shape antenna is similar to the Z shape antenna. The antenna is designed using FR4 glass epoxy substrate having dielectric constant of 4.4.
Length of ground plane \(L_g = 100\) mm,
Width of ground plane \(W_g = 75\) mm,
Length of Antenna \(L = 56\) mm,
Width of Antenna \(W = 50\) mm,
\(W_f = 3.8\) mm,
\(L_f = 41\) mm.
The ground plane size is selected as \(40\) mm x \(60\) mm, and the relative dielectric constant and the thickness of the substrate are=4.4and 2.2 respectively.

2.2 E Shape Antenna Design [1][5]

![E Shape Antenna](image)
The physical parameters and flow chart of E shape antenna is similar to the Z shape antenna. The antenna is designed using FR 4 glass epoxy substrate having dielectric constant of 4.4.
Length of ground plane \(L_g = 100 \text{ mm} \),
Width of ground plane \(W_g = 75 \text{ mm} \),
Length of Antenna \(L = 56 \text{ mm} \),
Width of Antenna \(W = 50 \text{ mm} \),
\(W_f = 3.8 \text{ mm} \),
\(L_f = 41 \text{ mm} \).
The ground plane size is selected as 40 mm x 60 mm, and the relative dielectric constant and the thickness of the substrate are 4.4 and 2.2 respectively.

3. SIMULATED RESULTS
3.1 Return loss of Z Shape Antennas using different Substrates

\[\text{Fig. 5. Return loss of Z shape antenna using substrates a) Z paper b) benzocyclobutane} \]

Z paper is one type of Substrate Material which is having Relative permittivity of 3.4 and Dielectric loss tangent 0.08.

\[\text{Fig. 6. Return loss comparison of Z paper and Benzocyclobutane} \]

3.2 VSWR of Z Shape Antenna using different Substrates

\[\text{Fig. 7. VSWR of Z shape antenna using c) Z paper d) Benzocyclobutane} \]

\[\text{Fig. 8. VSWR comparison of Z paper and Benzocyclobutane} \]
3.3 2D Radiation pattern of Z Shape antenna

![2D Radiation pattern of Z Shape antenna](image)

Fig. 9. 2D Radiation pattern of Z shape e) along phi f) along theta g) in total

3.4 3D Radiation pattern of Z Shape antenna

![3D Radiation pattern of Z Shape antenna](image)

Fig. 10. 3D Radiation pattern of Z shape h) along phi i) along theta j) in total

From fig.5 we observe that the return loss of Z shape antenna is -1.9 db to -2.2 db in the frequency range of 1.4 GHZ to 2 GHZ in case of Z paper substrate. Similarly for benzocyclobutane it is -2 db to -2.1 db. From fig.7 we observe that the VSWR of Z shape antenna is 9 to 8 in the frequency range of 1.4 GHZ to 2 GHZ in case of Z paper substrate. Similarly for benzocyclobutane it is 8 to 7. The bandwidth utilisation is 20% for Z paper and 25% for benzocyclobutane. fig.9 & fig. 10 shows 2D and 3D radiation patterns of Z shape antenna.

3.5 Return loss of H Shape Antennas using different Substrates

![Return loss of H Shape Antennas using different Substrates](image)

Fig. 11. Return loss of H shape antenna using substrates k) FR4 l) Rogers RT duroid m) Teflon

![Return loss comparison of FR4, Rogers RT duroid and Teflon](image)

Fig. 12. Return loss comparison of FR4, Rogers RT duroid and Teflon
3.6 VSWR of H Shape Antenna using different Substrates

![Graphs showing VSWR comparison of H shape antenna using substrates FR4, Rogers RT duroid, and Teflon.](image)

Fig. 13. VSWR of H shape antenna using substrates (a) FR4, (b) Rogers RT duroid, (c) Teflon.

![VSWR comparison graph](image)

Fig. 14. VSWR comparison of H shape antenna using substrates (a) FR4, (b) Rogers RT duroid, (c) Teflon.

3.7 2D Radiation pattern of H Shape antenna

![2D Radiation pattern graphs showing gain along phi, theta, and total.](image)

Fig. 15. 2D Radiation pattern of H shape antenna showing (a) gain along phi, (b) gain along theta, and (c) total gain.
3.8 3D Radiation pattern of H Shape antenna

From fig.11 we observe that the return loss of H shape antenna is -4 db to -2 db in the frequency range of 1.2 GHz to 1.7 GHz for FR4 Epoxy substrate, for Rogers RT duroid the return loss is -4 db to -2.5 db. Similarly for teflon it was -4 db to -2.5 db. From fig.14 we observe that the VSWR of H shape antenna is 4.5 to 7 in the frequency range of 1.4 GHz to 1.7 GHz for FR4 Epoxy substrate, for Rogers RT duroid the VSWR is 4.5 to 6.5. Similarly for Teflon it is 4.25 to 6.75. The bandwidth utilisation is 35% for FR4, 40% for Rogers RT duroid and 40% for Teflon material.

Fig.15 & fig. 16 shows 2D and 3D radiation patterns of H shape antenna.

3.9 Return loss of E Shape Antennas using different Substrates

From fig.17 we observe that the return loss of E shape antenna is -3 db to -2 db in the frequency range of 1.2 GHz to 1.7 GHz for FR4 Epoxy substrate, for Rogers RT duroid the return loss is -3 db to -2.5 db. Similarly for teflon it was -3 db to -2.5 db. From fig.18 we observe that the VSWR of E shape antenna is 3.5 to 5 in the frequency range of 1.4 GHz to 1.7 GHz for FR4 Epoxy substrate, for Rogers RT duroid the VSWR is 3.5 to 5.5. Similarly for Teflon it is 3.25 to 5.75. The bandwidth utilisation is 30% for FR4, 35% for Rogers RT duroid and 35% for Teflon material.

Fig.17. Return loss of E shape antenna using substrates w) FR4 x) Benzocyclobutaney) Teflon z) Rogers RT duroid
3.10 VSWR of E Shape Antenna using different Substrates

![Graphs of VSWR for different substrates](image)

Fig. 19. VSWR of E shape antenna using substrates i) FR4 ii) Benzocyclobutane iii) Teflon iv) Rogers RT duroid

![Comparison graph for FR4, Rogers RT duroid, and Teflon](image)

Fig. 20. VSWR comparison of FR4, Rogers RT duroid and Teflon

3.11 2D Radiation pattern of E Shape antenna

![Diagrams of 2D radiation pattern](image)

(v) Gain along phi

(vi) Gain along theta

(vii) Gain in total

Fig. 21. 2D Radiation pattern of E shape v) along phi vi) along theta vii) in total
3.12 3D Radiation pattern of E Shape antenna

![3D Radiation pattern of E Shape antenna](image)

(viii) Gain along phi
(ix) Gain along theta

![Gain in total](image)

Fig. 22. 3D Radiation pattern of E shape viii) along phi ix) along theta x) in total

Table 4.1: Evaluation results of Z, H and E Shaped Antennas

<table>
<thead>
<tr>
<th>ANTENNA SHAPE</th>
<th>RETURN LOSSES</th>
<th>VSWR</th>
<th>IMPEDANCE BANDWIDTH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z SHAPE: BENZOCYCLOBUTANE</td>
<td>-2DB TO -2.1DB</td>
<td>8.0 TO 7.0</td>
<td>25%</td>
</tr>
<tr>
<td>FREQUENCY RANGE: 1.4GHZ TO 2GHZ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PAPER SUBSTRATE</td>
<td>-1.9DB TO -2.2DB</td>
<td>9.0 TO 8.0</td>
<td>20%</td>
</tr>
<tr>
<td>H SHAPE: TEFLOMN</td>
<td>-4DB TO -2.5DB</td>
<td>4.25 TO 6.75</td>
<td>40%</td>
</tr>
<tr>
<td>FREQUENCY RANGE: 1.2GHZ TO 1GHZ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ROGERS RT DURID SUBSTRATE</td>
<td>-4DB TO -2.5DB</td>
<td>4.5 TO 6.5</td>
<td>40%</td>
</tr>
<tr>
<td>FR4 EPOXY SUBSTRATE</td>
<td>-4DB TO -2.5DB</td>
<td>4.5 TO 7.0</td>
<td>35%</td>
</tr>
<tr>
<td>E SHAPE: ROGERS RT DURID</td>
<td>-25DB TO -5DB</td>
<td>1.25 TO 4.0</td>
<td>44%</td>
</tr>
<tr>
<td>FREQUENCY RANGE: 1.4GHZ TO 1GHZ</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TEFLOMN SUBSTRATE</td>
<td>-25DB TO -5DB</td>
<td>1.25 TO 4.5</td>
<td>42%</td>
</tr>
<tr>
<td>BENZOCYCLOBUTANE SUBSTRATE</td>
<td>-22DB TO -5DB</td>
<td>1.25 TO 4.5</td>
<td>42%</td>
</tr>
<tr>
<td>FR4 SUBSTRATE</td>
<td>-15DB TO -3DB</td>
<td>1.5 TO 4.5</td>
<td>40%</td>
</tr>
</tbody>
</table>

4. CONCLUSION

The simulated results show the performance of Z shape, H shape, E shape Microstrip patch antennas. Band width, VSWR, Return loss for these antennas have been calculated. The results show that E shape antenna has better performance in the range of frequencies (0.6GHz-2GHz), since the VSWR of E shape antenna is 1.25 at 1.4 GHz and the Bandwidth utilisation is 44% when compared with the reference antenna and return loss is -25db. Thus E shaped antenna is found to give much better than Z shape and H shape antennas.
REFERENCES

